Leaf Vein Extraction Based on Gray-scale Morphology

نویسندگان

  • Xiaodong Zheng
  • Xiaojie Wang
چکیده

Leaf features play an important role in plant species identification and plant taxonomy. The type of the leaf vein is an important morphological feature of the leaf in botany. Leaf vein should be extracted from the leaf in the image before discriminating its type. In this paper a new method of leaf vein extraction has been proposed based on gray-scale morphology. Firstly, the color image of the plant leaf is transformed to the gray image according to the hue and intensity information. Secondly, the gray-scale morphology processing is applied to the image to eliminate the color overlap in the whole leaf vein and the whole background. Thirdly, the linear intensity adjustment is adopted to enlarge the gray value difference between the leaf vein and its background. Fourthly, calculate a threshold with OSTU method to segment the leaf vein from its background. Finally, the leaf vein can be got after some processing on details. Experiments have been conducted with several images. The results show the effectiveness of the method. The idea of the method is also applicable to other linear objects extraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Extraction and Automatic Recognition of Plant Leaf Using Artificial Neural Network

Plant recognition is an important and challenging task. Leaf recognition plays an important role in plant recognition and its key issue lies in whether selected features are stable and have good ability to discriminate different kinds of leaves. From the view of plant leaf morphology (such as shape, dent, margin, vein and so on), domain–related visual features of plant leaf are analyzed and ext...

متن کامل

Real-Time Face Recognition System Based On Morphological Gradient Features and ANN

Faces represent complex, multidimensional, meaningful visual stimuli. A real-time face recognition system has been implemented which is based on Artificial Neural Network. The system integrates three phases. At the initial phase, an image or a frame is grabbed from a real-time video source or webcam. Then the face region is detected using Local SMQT features and Split up SNoW Classifier and aft...

متن کامل

Similarity-based extraction of individual networks from gray matter MRI scans.

The characterization of gray matter morphology of individual brains is an important issue in neuroscience. Graph theory has been used to describe cortical morphology, with networks based on covariation of gray matter volume or thickness between cortical areas across people. Here, we extend this research by proposing a new method that describes the gray matter morphology of an individual cortex ...

متن کامل

An expert botanical feature extraction technique based on phenetic features for identifying plant species

In this paper, we present a new method to recognise the leaf type and identify plant species using phenetic parts of the leaf; lobes, apex and base detection. Most of the research in this area focuses on the popular features such as the shape, colour, vein, and texture, which consumes large amounts of computational processing and are not efficient, especially in the Acer database with a high co...

متن کامل

Character Extraction from Gray Images Based on Mathematical Morphology

A morphology-based thresholding technique for character extraction from outdoor images is developed. Such extraction is traditionally difficult because of the influence of illumination changes, such as lightness, shadow, and reflection. Changes in character font, apparent size, and inclination also make extraction more difficult. Though there are some character reading systems for format and si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011